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The two-dimensional renormalization map of the diamond-hierarchical lsing 
model in an external field is given, and pictures of the distribution of zeros of 
the partition function in the complex plane of temperature for varying values of 
coupling constant and external field are shown. Critical exponents of the model 
are found, and results are different from those of the Ising model on a two- or 
three-dimensional regular lattice. 
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1. INTRODUCTION 

Recently, hierarchical  spin models  ~ 5~ have received much at tent ion in the 
l i terature owing to some par t icular  proper t ies  of the models. First ,  
hierarchical  lattices c6~ are const ructed by decora t ing  each bond  with some 
basic cell i terat ively such that  the renormal iza t ion  approx ima t ion  of 
Migda l  tT~ and Kadanof f  tS) becomes exact. In other  words,  in the context  of 
the M i g d a i - K a d a n o f f  renormal iza t ion,  a variety of hierarchical  spin models  
become exactly solvable. Second, a r emarkab le  richness of phenomena  has 
been revealed from these solutions. In general  the par t i t ion  function has an 
infinite number  of zeros in the complex plane of temperature ,  which is 
essentially the Julia set of a ra t ional  map. ~9'~~ The Julia set exhibits multi-  
fractal structure,  t~t-~3) and the free energy near  the ferromagnet ic  t ransi t ion 
point  exhibits spat ia l ly  modula ted  s t ructure)  9'1~ In some models  with 
frustrat ion the renormal iza t ion  map  may  have chaot ic  t rajectories  which 
are suggested to cor respond to a spin-glass phase, t~4J F r o m  another  aspect, 
because these hierarchical  models  are highly inhomogeneous  in the coor-  
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dination number of lattice sites and lack of translational invariance, one 
may expect these models to deepen our understanding of physical systems 
such as random magnets, polymers, and percolation clustersf  '15'16) 

To have a complete understanding of hierarchical spin models, an 
external field has to be added to the models. However, because of the 
inhomogeneity in the coordination number of lattice sites, the exact treat- 
ment of external fields on hierarchical spin models is very complicated. The 
exact renormalization map of the diamond-hierarchical Ising model in an 
external field was first given by McKay and Berker, "7) who divided 
magnetic fields into sites and bonds, and a site field always induces a bond 
field while itself remaining invariant under the renormalization map. In the 
present work, the diamond-hierarchical Ising model in an external field 
also is studied, but without introducing bond fields. The exact two-dimen- 
sional renormalization map is given first. Through the analysis of the given 
renormalization map, we then study how an external field affects the dis- 
tribution and structure of the zeros. Finally, the thermodynamic properties 
of the model system are studied. 

The paper is organized as follows. In Section 2, the diamond-hierarchi- 
cal Ising model in external field is discussed, the two-dimensional renor- 
malization map of the model is given, and the fixed points of the map are 
discussed. In Section 3, the distribution of zeros of the partition function 
and the effect of external field and coupling constant on the distribution of 
zeros are studied with the use of pictures. Thermodynamic quantities of the 
model and critical exponents near the ferromagnetic transition point are 
presented in Section 4. 

2. T H E  M O D E L  A N D  ITS R E N O R M A L I Z A T I O N  M A P  

Hierarchical lattices are constructed by infinite iteration procedures 
such that the Migdal-Kadanoff renormalization approximation can have 
exact realizations. Starting with a single bond, one can construct a larger 
and larger hierarchical lattice through a self-similar iterative procedure as 
follows. Each bond of the previous lattice is replaced by some basic cell in 
one iteration step, and after infinite iterations it results in a self-similar, 
inhomogeneous lattice with infinite number of lattice sites. The construc- 
tion of the diamond-hierarchical lattice is schematized in Fig. 1, t'8) where 
each bond is decorated by four bonds. The finite lattice constructed after 
n steps has site number 2(4"-1 3 + 2) and bond number 4 " - l  

To define the Ising model on the diamond-hierarchical lattice, Ising 
spin is placed on each lattice site, and the Hamiltonian is 

H = - J  Z ( l )  
( i , j )  i 
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n = l  n = 2  n = 3  

Fig. 1. The first two levels in the iterative construction of the diamond-hierarchical lattice. 

where the first sum runs over all pairs of  nearest neighbors, 6 is the usual 
Kronecker  delta function, the Ising spin tr i has two possible values, + 1 and 
- 1, and the coupling constant  J and external field h are two parameters. 
The partition function for the model on the finite lattice constructed after 
n steps is given by 

Z,,= ~ exp [K~ ~ 6(a;, aj)+ Kz ~ a~] (2) 
br} <i.j> 

Here Ki = flJ, K2 = flh, and fl = 1/kT, with k the Boltzmann constant and 
T the temperature. For  the model defined on the diamond-hierarchical 
lattice, all symmetries associated with the Hamiltonian remain the same as 
the model defined on a regular lattice. However,  because the lattice is 
highly inhomogeneous,  the translational invariance is completely lost. 

To find the partition function with the renormalization map, let us 
review the well-known case where K2 = 0  first. ~9"~~ To simplify notations, 
two variables, y~ = e x' and Y2 = eX", are introduced. Without  external field, 
i.e., Y2 = 1, the recursion relation between the partition functions for the 
model on the finite lattices constructed after n steps and n -  1 steps is 

Z . ( y ,  ) = Z .  _ i(Y'l )[A (y , )3  2 ,, 4.-2 (3) 

where the function A(y~)  is given by 

A ( y l ) = 2 y l  (4) 

and Y'I is the image of Yl under the renormalization map M defined as 

Yl = M ( y ~ )  = �88 + y ? l ) 2  (5) 
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By the use of the recursion relation, Eq. (3), together with 

Z~(y~)=2(y~ + l) (6) 

one can obtained all of the information of the system defined by the model. 
When an external field appears, the partition function at the first level, 

expressed in terms of two additional variables a = y l y 2  and b = y , y ~  ~, 
becomes 

Z,(a, b, Y2) = ay2 + by[ 1 + 2 (7) 

The general recursion relation between the partition functions at the nth 
level and the ( n -  1)th level is found to be 

Z,,(a, b, Yz) = Z,,_ l(a', b', y2)[B(a, b)] 2 • 4"-2 (8) 

where the function B(a, b) is defined as 

B(a, b) = a + b (9) 

and a' and b' are the images of a and b under the two-dimensional renor- 
malization maps M1 and M2 defined as 

~a2 + l~ 2 
a,=Ml(a,b,  y2 )= \  a+b ] y[ l  (10) 

and 

b'=M=(a,b, Y 2 ) = \ a + b  ] Ya (11) 

Note that Y2 in Eqs. (8),)10),  and (11) remains the same as the initial 
value. The renormalization map found here is highly nonlinear, and the 
time-reversal symmetry, which is the symmetry associated with the 
Hamiltonian when the external field appears and corresponds to the inter- 
change between Y2 and y[  ~, is preserved in the map, and all results reduce 
to those of the case where an external field is absent by setting Y2 = 1. 

The phase diagram of the model can be determined from the fixed 
points of the renormalization map, and one can study the property of a 
fixed point from the eigenvalues of the linearized map around' the fixed 
point. For the two-dimensional map here, there are two eigenvalues AKt 
and AK2 associated with the two directions K~ and K2 of the flow of the 
renormalization map. An attracting fixed point, for which both eigenvalues 
are less than 1, represents a thermodynamic phase. A saddle point has one 
eigenvalue larger than 1 and another less than 1, and a renormalization 



Ising M o d e l  on Hierarchica l  Lat t ice  1123 

map will drive the point to move along the direction of the eigenvalue 
largher than 1. The point with both eigenvalues larger than 1 is a repelling 
fixed point, and it represents a phase transition. The fixed points of the 
renormalization map, defined by Eqs. (10) and (11), can be obtained by 
solving the two coupled equations 

af= Ml(af,  bf, yf)  (12) 

by= M2(af, bf, y{) (13) 

f Y where af and b I are defined as y~ Y2 and yY~/y~, respectively. The physical 
region ofy~ is 0 <  y~ < 1 for the antiferromagnetic case and 1 <y~ < oo for 
the ferromagnetic case, while the region of Y2 is 0 < Y2 < oo. If y~ is set to 
be 1, Eqs. (12) and (13) reduce to an identity equation for y~, and one has 
a set of solutions { y ~ = l  and 0<yzY<oo}. The eigenvalues of the 
linearized map around any point belonging to the set are A x, = 0  and 
A K2 = 2, and it implies that the flow of renormalization transformation goes 
ultimately to the sink (y~= 1, y ~ = 0 )  for 0 < y ~ < l ,  and to the sink 
(y~ = 1, y~ = ~ )  for 1 < y f <  oo. If one set y~=  1, the possible values o f y  f 
are 1, 3.38297 .... and or. For l _  f y ~ - y 2 =  1, one has AK,=0 and Ax2= 2, and 
under the renormalization transformation this point moves ultimately to 
the sink (y] = 1, y~=  or) for the external field h > 0 ,  and to the sink 
( y ] = l ,  y ~ = 0 )  for h < 0 .  For y~=3.38297 .... the eigenvalues of the 
linearized map are AK~ = 1.67857... and AK2 = 3.67857 .... and it corresponds 
to a repelling fixed point representing a ferromagnetic phase transition. 
The map also has two attracting fixed points at y f =  ~ and y f  for y f =  1 
which are referred as the ferromagnetic and the paramagnetic fixed point, 
respectively. The qualitative behavior of the flow of the renormalization 
transformation obtained here is essentially the same as the Ising model on 
a two-dimensional regular latticeJ ~9) 

3. THE ZEROS OF THE PARTIT ION FUNCTION 

To see the distribution of zeros of the partition function in the com- 
plex plane of temperature, one notices that if zeros of the partition function 
for the finite lattice constructed after n -  1 steps are known and denoted by 
~._ ~(i) and b._ ~(i) for the ith zero, then the zeros at the nth level, which 
are denoted by ~(k~) and b.(k;) for the kth zero associated with the ith 
zero at the ( n -  1)th level, can be found by solving the equations 

h,,_ ~( i) = M~(6,,(k,), b,,(ki), Y2) (14) 

b, _, (i) = M2(~,(k~), b,,(ki), Y2) (15) 
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This is the direct consequence of Eq. (8). Therefore, starting from the zeros 
of z~(a, b, Y2), in general one can find the limiting set of zeros of the parti- 
tion function through backward iterations of the renormalization map step 
by step, and this limiting set forms an invariant set in a four-dimensional 
space spanned by complex y~ and Y2. 

For the case where external field is absent, Eqs. (14) and (15) reduce 
to a one-dimensional map, 

~ . . _  ,(i) = M(f,~,.(ki)) (16) 

Sufficient backward iterations of the map with the initial value Yl = - 1 ,  
which is the zero of Z~(y~ ), give the limiting set of the Yang-Lee zeros ~2~ 
of the partition function in the complex Yt plane. The distribution of zero 
is simply the Julia set of the map. tg'~~ There are two points here to be 
mentioned: the Julia set is an invariant set which is independent of the 
initial value of y~, and instead of the backward iteration one can also use 
the forward iteration. If sufficient forward iterations are performed, various 
basins of attraction can be distinguished, and the boundary between dif- 
ferent basins of attraction is made up of the unstable fixed points which 
belong to the set of zeros of the partition function. By the use of forward 
iterations, the resultant unstable fixed points are shown in Fig. 2a. In 
Fig. 2a, one can see clearly that in addition to the ferromagnetic transition 
located at y, ,~ 3.383, there is an antiferromagnetic transition at y~ ~ 0. 296. 

For the case where an external field appears, one has to specify the 
magnitude of external field h (coupling constant J) in terms of coupling 
constant J (external field h) in order to see the distribution of the zeros in 
the complex y~ (y , )  plane. Because the real situation corresponds to the 
system in the thermodynamic limit, we therefore specify the magnitude 
when the system is defined on the infinite lattice. The specific magnitude 
changes according to Eqs. (10) and (11) when the renormalization map is 
performed. With the relation h = OJ or J =  O'h, where 0 and O' are positive 
and real, specified on the infinite lattice, the set of the unstable fixed points 
is only a subset of the invariant set in a four-dimensional space, and one 
can only perform forward iterations to take account of the specified rela- 
tion on the infinite lattice. When one performs sufficient forward iterations 
to obtain basins of attraction, then closures of the boundaries between 
different basins of attraction give the set of unstable fixed points which also 
is the set of the zeros in the complex y~ or Y2 plane. 

To see the distribution of zeros of the partition function in the 
complex yj plane, an external field h is specified by the relation h = O J  
when the system is on the infinite lattice. According to the analysis of fixed 
points in Section 2, there are two basins of attraction; one belongs to the 
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Fig. 2. The zeros of the partition function in the complex )'1 plane in the thermodynamic 
limit, obtained by forward iterations as explained in the text. The external field is specified by 
the relation h=OJ in the thermodynamic limit with (a) 0 = 0 ,  (b) 0=0.01,  (c) 0=0.1 ,  
(d) 0 = 1, (e) O= 10, and (f) O= 100. 
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ferromagnetic fixed point, y ( =  oo, and the other is the paramagnetic fixed 
point, y f =  1. The closures of the boundaries between two different basins 
of attraction for different values of 0 are shown in Figs. 2b-2f. From Figs. 
2a-2f, one can see that the motion of the zeros caused by the external field 
is highly nonlinear, which is due to the nonlinearity of the renormalization 
map. Qualitatively, once a tiny external field appears, the zeros move away 
from the real axis, then approach a circle with increasing h, and finally 
disappear in the limit of 0 ~ oo. There is no zero falling on the real axis, 
and this implies that only one phase exists in the physical region for h :/: 0. 

The process of obtaining the distribution of the zeros in the complex 
Y2 plane is the same as the one in the complex y t plane except that the 
coupling constant J is specified by the relation J =  O'h. In the Y2 plane, 
there are also two kinds of basins of attraction, one for y~ = ov and the 
other for ),~ = 0. When 0 '= O, there are only two zeros, i and - i ,  for the 
partition function. The zeros become rich for nonvanishing O' as shown in 
Figs. 3a-3e for varying O' values. From Figs. 3a-3e, one can see that the 
distribution of the zeros almost falls on a unit circle with fractal structure 
when 0' is very large, and more fine resolution is needed to see the fractal 

f , J l l T ~ J J l l l , f l l l r , l l r , J , , t f J l : l r r , l r f f  
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- 2  

-1  

I I I I I l l l l l t l l l l l l t t l d l l J i l l l l l l l t l l l l l l  

-1  0 1 

Fig. 3. The zeros of the partition function in the complex y,  plane in the thermodynamic 
limit, obtained by forward iterations as explained in the text. The coupling constant is 
specified by the relation J=O'h in the thermodynamic limit with (a) 0'=0.01, (b) 0 '=0.1,  
(c) 0'= 1, (d) 0 ' =  10, and (e) 0 '= 100. 
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structure for 0' approaching to the limit of 0' ~ ~ .  We note that it appears 
in Figs. 3a and 3b that there are two zeros falling on the positive real axis; 
this is caused by the limitation of resolution. In fact there is only one point 
falling on the positive real axis for all values of 0', and this point is the 
saddle point of Y2 = 1. 

In obtaining Figs. 2a-2f and 3a-3e, the distributional region of the 
zeros in the complex y~ or Y2 plane is coarse-grained, and forward itera- 
tions of the renormalization map are performed up to 16 times at each 
point to determine the basin of atraction to which the point belongs. The 
resolution of each figure depends on the interval between the two nearest 
points, and the typical chosen interval is about 0.2, depending on how 
large the distributional region of the zeros is. Note that Fig. 2a is invariant 
in the change y~ ~ 1/y~ or ),~ ~ -y~ ,  due to the same symmetry main- 
tained by the map, while the invariance is broken by the specified relation 
h = OJ or J = O'h in other figures. 

4. T H E R M O D Y N A M I C  QUANTIT IES  A N D  CRITICAL 
EXPONENTS 

Various thermodynamic quantities can be obtained by the derivatives 
of the free energy. The functional equation for the reduced free energy per 
bond can be obtained from the recursion relation, Eq. (8), obeyed by the 
partition function, and the result is 

f [Ml(a ,b ,  y2),M2(a,b, y2),y2]=4f(a,b, y2)+~lnB(a,b)  (17) 

By the use of the above equation, one can obtain the following convergent 
representation of the free energy per bond: 

f(a, b, )'2)= -2---~ ~ In B[M'~(a, b, y2), M~(a, b, Y2)-I (18) 
n>~O 

Note that the fixed point of the ferromagnetic phase transition is located 
at y{=3.38297 .... which corresponds to the transition temperature at 
kT,./J= 0.82051 .... To find each thermodynamic quantity, the derivative of 
the free energy is replaced by the finite difference, and the summation in n 
of Eq. (15) is carried up to n = 13, in which the pseudocritical temperature 
at which the maximum of specific heat or susceptibility of a finite system 
occurs agrees with kTc/J up to the fourth decimal place. The calculated 
thermodynamic quantities, which are expressed as dimensionless, are 
magnetization M, specific heat C/k, and susceptibility X J, and the results 
are shown in Figs. 4a-4d, where the magnetization M(T) and susceptibility 

822/75/5-6-23 
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Table I. Critical Exponents of the Ising Model  on a Diamond-Hierarchical  
Lattice and on Two-  and Three-Dimensional  Regular Lattices 

Type of lattice a fl ), 6 

Diamond-hierarchical 0.0150 0.1625 2.2625 15.3846 
2D regular lattice 0 0.125 1.75 15 
3D regular lattice 0.125 0.312 1.250 5.150 

z(T)J at h = 0  are approximated by adding a tiny external field, 
h = 3  x 10-T J, to the system to avoid the trouble caused by degenerate 
vacua for T < T,.. 

For a second-order phase transition, the critical behavior near the 
phase transition point can be characterized by a set of critical exponents 
such as ~, fl, and 7 defined by C(T)~ (T-7",.) ~, M(T)~ (T, .-T) •, and 
x(T)~(T-T, . ) - ; '  for temperature T near the critical temperature T, of 
the infinite system. Another critical exponent 6, which is related to the 
behavior of magnetization at the critical point under the influence of the 
external field, is defined by M(Tc)~ Ihl t/,~ for a very small external field h. 
Critical exponents can be obtained by linearizing the renormalization 
map of Section 2 around the ferromagnetic transition point, but here 
we use the numerical method to obtain the result approximately. The 
exponents are extracted directly from the results of Figs. 4a-4d by finding 
the slopes from the logarithmic plots. Because of the spatially modulated 
structure of the free energy near the ferromagnetic transition point, ~9' tol the 
range of temperature away from the critical temperature for the power law 
behavior of specific heat is much narrower compared with other quantities. 
The resultant critical exponents along with those for the model on two- 
and three-dimensional regular lattices are listed in Table I. The results 
shown in Table I indicate that the critical behavior of the diamond- 
hierarchical Ising model is different from that of the model defined on a 
two- or three-dimensional regular lattice. 

5. C O N C L U S I O N  

In this paper, the two-dimensional renormalization map of the 
diamond-hierarchical Ising model an external field is given, and the 
information revealed from the map is studied. The unstable fixed points of 
the renormalization map give the zeros of the partition function, and the 
distribution of zeros in the complex plane of temperature is exhibited by 
the figures. It is believed that hierarchical spin models can have phase 
transition and nonclassical criticality at finite temperatures.C~'4~ The critical 
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exponents of the diamond-hierarchical Ising model near the ferromagnetic 
transition point are obtained approximately by the numerical method, and 
the results exhibit nonclassical criticality clearly. 

The invariant set of the renormalization map is defined on a four- 
dimensional space of the complex y~ and Y2. It is interesting to know the 
general property of the four-dimensional invariant set, which is not 
touched by this paper. One has to keep in mind that hierarchical lattices 
are examples of fractal lattices. Features found on one fractal latice may 
not pertain for other fractal lattices or persist on regular lattices. In fact, it 
has been suggested t2~ that a characterization of fractal lattices involves 
several factors: the fractal dimensionality, the topological dimensionality, 
the order of ramification,  the connectivity, the lacunarity, etc. Then it is 
important to know how these factors are related to the unusual features 
appearing on hierarchical lattices, and some progress has been made along 
this direction. ~17' 18,21-23) 
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